Intermediately Complex Models for the Hydrological Interactions in the Atmosphere-Vegetation-Soil System∗

نویسندگان

  • ZENG Xiaodong
  • Robert E. DICKINSON
  • Xubin ZENG
  • Samuel S. P. SHEN
چکیده

This paper investigates the hydrological interactions in the atmosphere-evegetation-soil system by using the bucket model and several new simplified intermediately complex models. The results of mathematical analysis and numerical simulations show that these models, despite their simplicity, can very clearly reveal the essential features of the rather complex hydrological system of atmosphere-ecosystem-soil. For given atmospheric variables, these models clearly demonstrate multiple timescales, the “red shift” of response spectra, multi-equilibria and limit cycles, bifurcation, abrupt change, self-organization, recovery, “desertification”, and chaos. Most of these agree with observations. Especially, the weakening of “shading effect” of living canopy and the wilted biomass might be a major mechanism leading to the desertification in a relatively short period due to overgrazing, and the desertification in a relatively long period or in climate of change might be due to both Charney’s mechanism and the shading effect. These ideas could be validated with further numerical simulations. In the paper, some methods for improving the estimation of timescales in the soil water evolution responding to the forcing are also proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling forest fires hydrological impact using spatio - temporal geographical data

In recent years, forest fires frequency and intensity has increased, causing a new awareness about their impact not only on vegetation, but also on hydrological regime. Changes in vegetation influence the processes of interception and evapotranspiration, seriously affecting the hydrological cycle. Forest fires can also affect hydrological processes indirectly, altering the hydraulic properties ...

متن کامل

Modeling of hydrological processes in arid agricultural regions

Understanding of hydrological processes, including consideration of interactions between vegetation growth and water transfer in the root zone, underpins efficient use of water resources in arid-zone agriculture. Water transfers take place in the soil-plant-atmosphere continuum, and include groundwater dynamics, unsaturated zone flow, evaporation/transpiration from vegetated/ bare soil and surf...

متن کامل

Modeling Vegetation as a Dynamic Component in Soil-vegetation-atmosphere Transfer Schemes and Hydrological Models

[1] Vegetation affects the climate by modifying the energy, momentum, and hydrologic balance of the land surface. Soil-vegetation-atmosphere transfer (SVAT) schemes explicitly consider the role of vegetation in affecting water and energy balance by taking into account its physiological properties, in particular, leaf area index (LAI) and stomatal conductance. These two physiological properties ...

متن کامل

Hydrological Land Surface Response in a Tropical Regime and a Midlatitudinal Regime

A statistical–dynamical study was performed on the role of hydrometeorological interactions in the midlatitudes and the semiarid Tropics. For this, observations from two field experiments, the First International Satellite Land Surface Climatology Project Field Experiment (FIFE) and the Hydrological Atmospheric Pilot Experiment (HAPEX)–Sahel, representative of the midlatitudes and the semiarid ...

متن کامل

Comparison of 1D models of water flow in unsaturated soils

Understanding the interaction between soil, vegetation and atmosphere processes and groundwater dynamics is of paramount importance in water resources planning and management in many practical applications. Hydrological models of complex water resources systems need to include a number of components and should therefore seek a balance between capturing all relevant processes and maintaining dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006